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A. Comparing Transducers

This thesis presents a nuanced approach to distinguishing between two word-to-word functions
defined by transducers, moving beyond the binary concept of equivalence. A finite state
transducer is a computational model that reads an input word and produces an output word
using finite memory. Examples of transducers include spell checkers, grammatical tools, and
speech recognition systems. While automata accept set of input words, transducers extends
this by associating output words to each input word, thereby defining a relation between
input and output words. Formally, if A is the input alphabet and B is the output alphabet,
a transducer defines a relation over A∗ × B∗, known as a rational relation. If the relation
is a graph of a function, then it is called rational functions. Sequential functions are strict
subclass of rational functions, defined as the functions recognised by input-deterministic
finite state transducers.

Given two transducers, a natural question is: how similar are they? The traditional
approach is testing equivalence of transducers that determines whether the relations defined
by the transducers are identical. Equivalence checking is a well-studied problem in the
literature and is known to be undecidable in general [8]. But for transducers that realise
functions, checking their equivalence is decidable [3] and shown to be PSPACE-complete [9].

We generalise the boolean comparison to a quantitative setting by assigning a value to a
pair of transducers that indicate how different they are from each other. A metric on words
over the alphabet B is a function d : B∗ × B∗ → R ∪ {∞} such that for any words u, v and
w in B∗, d(u, v) = 0 ⇐⇒ u = v, d(u, v) = d(v, u) and d(u, v) ≤ d(u, w) + d(w, v). We lift a
word metric to the class of word-to-word functions. Given a metric d on words, we define
the distance between two functions f, g with the same input domain, to be the supremum of
d(f(u), g(u)) for all words u in their domain. If their domains are different, the distance is
infinite. It can be verified that d is a metric on functions. The distance d(T1, T2) between
two functional transducers T1 and T2 is the distance between the (rational) functions defined
by them. The value of d(T1, T2) is an upperbound on the distance between the outputs of T1
and T2 on any input.

An obvious question is whether we can compute the distance for relevant metrics. A
notable class of metrics is edit distances. The edit distance between two words is the minimum
number of edit operations — such as insertion, deletion, or substitution — required to rewrite
one word to another if possible, and infinite otherwise. Some common edit distances are
given in Table 1. Our main result is summarised as follows.

▶ Theorem 1 ([2]). The distance between rational functions w.r.t. a metric given in Table 1
is computable.

Further, we introduce two generalisations of the notion of distance between functions, namely,
diameter of a relation and index of a relation in the composition closure of another.

The diameter of a relation w.r.t. a metric is defined to be the supremum of the distance
of every pair in the relation. This is studied for rational relations when distance over words
is measured by their length difference [7]. We extend the result to edit distances as follows.
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Edit Distance Permissible Operations

Hamming letter-to-letter substitutions

Conjugacy left and right cyclic shifts

Transposition swapping adjacent letters

Longest Common Subsequence insertions and deletions

Levenshtein insertions, deletions, and substitutions

Damerau-Levenshtein insertions, deletions, substitutions and adjacent transpositions

Table 1 Edit Distances

▶ Theorem 2 ([2]). The diameter of a rational relation w.r.t. a metric given in Table 1 is
computable.

The index of a relation R in the composition closure of a relation S is defined to be the
smallest integer k such that R is contained in the k-fold composition of S. If k < ∞, then
R is said to have the finite index property in the composition closure of S. We show that
the finite index property is undecidable for arbitrary rational relations. A rational relation
is metrizable w.r.t. a metric d if the graph of the relation defines a distance equivalent to d

upto boundedness. We have the following result for metrizable relations.

▶ Theorem 3 ([2]). The index of a rational relation in the composistion closure of a metrizable
relation w.r.t. a metric given in Table 1 is computable.

The computability of distance, diameter and index relies on a combinatorial result:
checking whether a rational relation is conjugate. Loosely speaking, the computability rests
on deciding conjugacy of a rational relation defined by the strongly connected components of
the cartesian product of the two transducers.

B. Conjugacy of a Rational Relation

A pair of words is conjugate if they are cyclic shifts of each other. For instance, the pair
of words (listen, enlist) is conjugate, while (loop, pool) is not. A relation is conjugate if
every pair in the relation is conjugate. We address the decidability of conjugacy of rational
relations: Given a rational relation, does it contain only conjugate pairs? We have the
following result.

▶ Theorem 4 ([1]). Conjugacy of rational relations is decidable.

The decidability of conjugacy relies on the notion of a common witness of a relation.
This is inherited from Lyndon-Schützenberger’s theorem [10] characterising conjugacy of two
words — a pair of words (u, v) is conjugate if and only if there exists a word z such that
uz = zv. By symmetry of conjugacy, there also exists a word z such that zu = vz. A word z

is a common witness of a relation R if either for all (u, v) ∈ R, uz = zv, or for all (u, v) ∈ R,
zu = vz.

We give the following characterisations for conjugacy of a set of pairs of words, which is
a generalisation of Lyndon-Schützenberger theorem.

▶ Theorem 5 ([1]). Let G be an arbitrary set of pairs of words. The following are equivalent.

1. G∗ is conjugate.
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2. G∗ has a common witness z.
3. G has a common witness z.
4. Roots of G has a common witness z.

▶ Theorem 6 ([1]). Let G = (u0, v0)G1
∗(u1, v1) where G1 is an arbitrary sets of pairs of

words, and (u0, v0), (u1, v1) are arbitrary pairs of words. The following are equivalent.

1. G is conjugate.
2. G1 ∪ {(u1u0, v1v0)} has a common witness.
3. G has a common witness.

In the above theorem, the common witness of G is obtained by a word equation involving
u0, u1, v0, v1 and a common witness of the set G1 ∪ {(u1u0, v1v0)}.

▶ Theorem 7 ([1]). Let G = (u0, v0)G1
∗(u1, v1) · · · (uk−1, vk−1)Gk

∗(uk, vk), k > 0 where
G1, . . . , Gk are arbitrary sets of pairs of words, and (u0, v0), . . . , (uk, vk) are arbitrary pairs
of words. The following are equivalent.

1. G is conjugate.
2. Each singleton redux of G (where all but one Kleene star is substituted with (ϵ, ϵ)) has a

common witness z.
3. G has a common witness z.

We prove that a rational relation is conjugate if and only if each of its constituent relation
has a common witness. This provides a decision procedure for computing a common witness
of a relation. The characterisation of conjugacy via common witness, together with this
procedure, yields an algorithm for deciding conjugacy of rational relation.

C. Approximate Problems for Finite Transducers

Rational relations trivially extend rational functions, and sequential functions are strict
subclass of rational functions. The class membership problems between the classes are
known to be decidable. This includes the functionality problem [11], which asks whether
a given a rational relation (by a transducer) has an equivalent rational function, and the
determinisation problem [5], which asks whether a given rational function has an equivalent
sequential function. We introduce approximate versions of these problems and show they are
decidable as well.

The approximate determinisation problem w.r.t. distance d asks given a finite transducer
recognising a function f , does there exists a sequential function g such that d(f, g) is finite.
For exact determinisation, determinisable finite transducers are characterised by the so called
twinning property [5, 4], a pattern that requires that the delay between any two outputs on the
same input must not increase when taking synchronised cycles of the transducer. We consider
an approximate version of the twinning property (ATP), with no constraints on the delay, but
instead requires that the output words produced on the synchronised loops are conjugate. It
turns out that ATP is not sufficient to characterise approximately determinisable transducers,
and an extra property is needed, the strongly connected twinning property (STP), which
requires that the twinning property holds within strongly connected components of the finite
transducer. We show that a transducer T is approximately determinisable (for Levenshtein
family of distance) iff both ATP and STP hold and, if they do, we show how to approximately
determinise T . We also prove that ATP and STP are both decidable, and hence we get the
following result.
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▶ Theorem 8 ([6]). The approximate determinisation problem for rational functions
w.r.t. Levenshtein family of distances are decidable.

The approximate functionality problem asks whether a given rational relation R is almost
a rational function, in the sense that d(R, f) is finite for some rational function f , where
d(R, f) is now the supremum, for all (u, v) ∈ R, of d(v, f(u)). We get the following result as
a consequence of computation of diameter of a rational relation.

▶ Theorem 9 ([6]). The approximate functionality problem for rational relations w.r.t. metrics
given in Table 1 are decidable.

We generalise the approximate determinisation problem to rational relations as well,
which amounts to decide given a rational relation R, whether exists a sequential function f

such that d(R, f) is finite. We show that the characterisation for approximate determinisation
of rational functions also holds for rational relations, and hence Theorem 8 also holds for
rational relations as well.
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