Approximate Problems for Finite Transducers

Saina Sunny, saina19231102@iitgoa.ac.in Indian Institute of Technology Goa, India

Emmanuel Filiot

efiliot@gmail.com

Université libre de Bruxelles

Ismaël Jecker

ismael.jecker@gmail.com

Université de Franche-Comté

Khushraj Madnani

kmadnani@mpi-sws.org

Max Planck Institute for Software Systems

(日) (部) (注) (注) (注)

10 July, 2025

ICALP 2025, Aarhus University

Finite State Transducer

- Machine that reads an input word and produces output word(s) using finite memory.
- Examples: spell checkers, grammatical tools.

Background o●oooooo

pproximate Problems

Approximate Functionality

Approximate Determinisation

2/20

Automaton vs. Transducer

Automaton

• Accepts a set of words.

Transducer

• Defines a relation over input-output words.

Accepts odd length words.

Outputs letters at odd positions.

 $aba \rightarrow \mathbf{aa}$

Background	Approximate Problems	Approximate Functionality	Approximate Determinisation	Summary
oo●ooooo	00000000000	00		000
Rational]	Relations			

• Rational relations are relations defined by transducers.

$$\rightarrow \overbrace{q_0}^{\sigma} \overbrace{\sigma \mid \epsilon}^{\sigma \mid \sigma} \quad \text{defines the relation } \{(u, v) \mid v \text{ is a subword of } u\}.$$

 $\sigma \in \{a,b\}$

Background	Approximate Problems	Approximate Functionality	Approximate Determinisation	Summary
00000000	00000000000	00		000
Rational	Functions			

• Rational functions are functions defined by transducers.

Background	Approximate Problems	Approximate Functionality	Approximate Determinisation	Summary
0000●000	000000000000	00		000
Sequential	Functions			

• Sequential functions are functions defined by input-deterministic transducers.

• The function $f_{last} : u\sigma \to \sigma u$ is not sequential.

Background 00000●00 pproximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Recap: (Sub)classes of Transducers

sequential functions \subsetneq rational functions \subsetneq rational relations

- Rational relations relations defined by transducers.
- Rational functions functions defined by transducers.
- Sequential functions functions defined by input-deterministic transducers.

Background 000000€0

pproximate Problems

Approximate Functionality

Approximate Determinisatio: 000000000

Class Membership Problems

$\begin{array}{c} \text{sequential function} & \overbrace{\text{determinisation}}^{\text{functionality}} \text{rational function} & \overbrace{\text{rational relation}}^{\text{functionality}} \\ \end{array}$

Problem	Input	Question
Functionality	rational relation R	Is R a function?
Determinisation	rational function f	Is f sequential?

Background 0000000●

pproximate Problems 0000000000 Approximate Functionality

Approximate Determinisatio

Class Membership Problems

 $\begin{array}{c} \text{sequential function} \\ \hline \\ \end{array} \begin{array}{c} \text{determinisation} \\ \hline \\ \\ \end{array} \begin{array}{c} \text{functionality} \\ \hline \\ \\ \\ \end{array} \begin{array}{c} \text{functionality} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \text{rational relation} \\ \end{array} \end{array}$

Problem	Result
Functionality	P [Choffrut, 1977, Weber and Klemm, 1995]
Determinisation	P [Schützenberger, 1975, Gurari and Ibarra, 1983]

• We study approximate versions of these problems.

Approximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Approximate Class Membership Problems

 $\begin{array}{c} \mathsf{apx. \ determinisation} \\ \mathrm{sequential \ function} \xleftarrow{} \mathsf{apx. \ functionality} \\ \longleftarrow \\ \end{array} \\ \mathbf{apx. \ functionality} \\ \mathbf{apx. \ functionality}$

Problem	Input	Question
Apx. Functionality	rational relation R	Is R close to a function?
Apx. Determinisation	rational function f	Is f close to a sequential function?

• Closeness can be measured using a notion of distance between functions/relations.

Background	Approximate Problems	Approximate Functionality	Approximate Determinisation	Summary
00000000	o●oooooooooo	00		000
Distance	between Words			

- Edit distance between two words is the minimum number of edits required to rewrite one word to another.
- edits substitutions, insertions, deletions, ...

Examples	١
d(hello, yellow) = 2.	l
Kyellow	l
yellow	

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Approximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Common Edit Distances

Edit Distance	Permissible Operations	
Hamming	letter-to-letter substitutions	
Longest Common Subsequence	insertions and deletions	
Levenshtein	insertions, deletions, and substitutions	
Damerau-Levenshtein	insertions, deletions, substitutions and adjacent transpositions	

Background cooococco Approximate Problems cooococco Approximate Functionality coo Approximate Determinisation coo Summary coo Distance between Functions Functionality Coo Coo

• Let d be a distance on words. We can lift it to word-to-word functions.

$$d(f,g) = \begin{cases} \sup \{ d(f(w), g(w)) \mid w \in dom(f) \} & \text{if } dom(f) = dom(g) \\ \infty & \text{otherwise} \end{cases}$$

Examples

 \bullet Consider functions $f_{\mathsf{last}}: \mathsf{u}\sigma \to \sigma\mathsf{u}$ and $f_{\mathsf{id}}: \mathsf{u}\sigma \to \mathsf{u}\sigma$

 $d(f_{\mathsf{last}}, f_{\mathsf{id}}) = 2$ (w.r.t. Levenshtein distance).

 $d(f_{\mathsf{last}}, f_{\mathsf{id}}) = \infty$ (w.r.t. Hamming distance).

Approximate Problems

Approximate Functionality

Approximate Determinisation

Distance between Functions

• Let d be a distance on words. We can lift it to word-to-word functions.

$$d(f,g) = \begin{cases} \sup \{ d(f(w), g(w)) \mid w \in dom(f) \} & \text{if } dom(f) = dom(g) \\ \infty & \text{otherwise} \end{cases}$$

- f and g are close if their distance d(f, g) is finite.
- Edit distance between two rational functions is computable [Aiswarya et al., 2024].

Approximate Problems

Approximate Functionality

Approximate Determinisation

Approximate Determinisation

sequential function $\xleftarrow{\text{approx. determinisation}}$ rational function

• A rational function f is approximately determinisable w.r.t. a distance d if there exists a sequential function g such that d(f, g) is finite.

Examples

- $\bullet~{\rm The~function}~f_{\mathsf{last}}: \mathsf{u}\sigma \to \sigma \mathsf{u}$ is approx-determinisable w.r.t. Levenshtein.
- The function $f_{id} : u\sigma \to u\sigma$ is sequential and $d(f_{last}, f_{id})$ is finite.

Approximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Approximate Functionality

rational functions $\xleftarrow{\text{approx. functionality}}$ rational relations

• A rational relation R is approximately functionalisable w.r.t. a distance d if there exists a rational function f such that d(f, R) is finite.

Approximate Problems

Approximate Functionality

Approximate Determinisation

Approximate Functionality

rational functions $\xleftarrow{\rm approx.\ functionality}$ rational relations

- A rational relation R is approximately functionalisable w.r.t. a distance d if there exists a rational function f such that
 - dom(R) = dom(f) and
 - $\exists k \text{ s.t. on any input } u$, distance between f(u) and $v \in R(u)$ is at most k,

i.e., $\sup\{d(v, f(u)) \mid (u, v) \in R\} < \infty$

Approximate Problems

Approximate Functionality

Approximate Determinisation

Approximate Functionality

rational functions $\xleftarrow{\text{approx. functionality}}$ rational relations

• A rational relation R is approximately functionalisable w.r.t. a distance d if there exists a rational function f such that d(f, R) is finite.

Examples

• Consider the rational relation $R = f_{ab} \cup f_{ba}$ where

 $f_{ab}: w \to (ab)^{|w|}$ $f_{ba}: w \to (ba)^{|w|}$

Approximate Problems

Approximate Functionality

Approximate Determinisation

Approximate Functionality

rational functions $\xleftarrow{\text{approx. functionality}}$ rational relations

• A rational relation R is approximately functionalisable w.r.t. a distance d if there exists a rational function f such that d(f, R) is finite.

Examples

• Consider the rational relation $R = f_{ab} \cup f_{ba}$ where

 $f_{ab}: w \to (ab)^{|w|}$ $f_{ba}: w \to (ba)^{|w|}$

• The function f_{ab} is rational and $d(f_{ab}, R)$ is finite w.r.t. Levenshtein.

Approximate Problems

Approximate Functionality

Approximate Determinisatio

Approximate Functionality

rational functions $\xleftarrow{\text{approx. functionality}}$ rational relations

• A rational relation R is approximately functionalisable w.r.t. a distance d if there exists a rational function f such that d(f, R) is finite.

Examples

• Consider the rational relation $R = f_{ab} \cup f_{ba}$ where

$$f_{ab}: w \to (ab)^{|w|} \qquad abab \cdots ab$$

$$f_{ba}: w \to (ba)^{|w|} \qquad baba \cdots b$$

• The function f_{ab} is rational and $d(f_{ab}, R)$ is finite w.r.t. Levenshtein.

Approximate Problems

Approximate Functionality

Approximate Determinisatio

Approximate Functionality

rational functions $\xleftarrow{\text{approx. functionality}}$ rational relations

• A rational relation R is approximately functionalisable w.r.t. a distance d if there exists a rational function f such that d(f, R) is finite.

Examples

• Consider the rational relation $R = f_{ab} \cup f_{ba}$ where

$$f_{ab}: w \to (ab)^{|w|} \qquad \not abab \cdots aba$$

$$f_{ba}: w \to (ba)^{|w|} \qquad baba \cdots ba$$

• The function f_{ab} is rational and $d(f_{ab}, R) = 2$ w.r.t. Levenshtein.

Background	Approximate Problems	Approximate Functionality	$\begin{array}{c} \text{Approximate Determinisation} \\ \texttt{0000000000} \end{array}$
00000000	0000000000●	00	

\sim	D 1
$()_{11r}$	Regulte
Our	ICouro

Distances Problems	Hamming	Levenshtein family
Approximate functionality	Decidable	Decidable
Approximate determinisation	Decidable	Decidable

pproximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Approximate Functionality: Characterisation

$$\mathsf{diff}_d(R) = \sup\{d(v_1, v_2) \mid \exists u \in dom(R), (u, v_1), (u, v_2) \in R\}$$

Lemma

A rational relation R is approximately functionalisable w.r.t. a distance d iff $\operatorname{diff}_d(R) < \infty$.

• $\operatorname{diff}_d(R)$ is computable for a given rational relation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

Exact Determinisation

- Extend automata subset construction.
- On any input, output the longest common prefix and keep the delay in memory.
- Construction terminates if the delay is finite.
- This is characterised using the *twinning property* of transducers [Choffrut, 1977].

delay(u, v) = (u', v') s.t. $u = \ell u'$ and $v = \ell v'$ where ℓ is the longest common prefix of u and v.

Background	Approximate Problems	Approximate Functionality	Approximate Determinisation $0 \bullet 00000000$	Summary
00000000	00000000000	00		000
Twinning	Property			

• A transducer \mathcal{T} satisfies twinning property iff for all situations

$$delay(u_1, u_2) = delay(u_1v_1, u_2v_2).$$

delay(u, v) = (u', v') s.t. $u = \ell u'$ and $v = \ell v'$ where ℓ is the longest common prefix of u and v.

pproximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Twinning Property: Example

 $delay(aa, ba) \neq delay(aaa, baa).$

delay(u, v) = (u', v') s.t. $u = \ell u'$ and $v = \ell v'$ where ℓ is the longest common prefix of u and v.

pproximate Problems

Approximate Functionality

 $\begin{array}{c} {\rm Approximate \ Determinisation} \\ {\rm 0000000000} \end{array}$

Summary 000

15/20

Approximate Twinning Property (ATP)

• A transducer \mathcal{T} satisfies *approximate* twinning iff for all situations

 v_1 and v_2 are conjugates

イロト イロト イヨト イヨト 三日

 $u \mid u_1$

Background	Approximate Problems	Approximate Functionality	Approximate Determinisation	Summary
00000000	00000000000	00		000
Why Con	jugacy			

 $yxyx \cdots yx$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

16 / 20

Background 00000000	Approximate Problems	Approximate Functionality 00	Approximate Determinisation	Summary 000
Why Con	jugacy			

 $xyxy\cdots xyx$

 $yxyx \cdots yx$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

16 / 20

pproximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Approximate Determinisation: Construction

• Construction: extend automata subset construction. On any input, choose the output of the transducer with the smallest index.

Approximate Determinisation: Characterisation

- **ATP** is sufficient for certain subclassses of rational functions to be approx. determinisable.
 - **1** union of sequential transducers
 - ${\it 2\!\!2}$ "concatenation" of sequential transducers

Approximate Determinisation: Characterisation

- **ATP** is sufficient for certain subclassses of rational functions to be approx. determinisable.
 - **1** union of sequential transducers
 - 2 "concatenation" of sequential transducers
- **ATP** is not sufficient for rational functions to be approximately determinisable w.r.t. Levenshtein family of distances.

 $f_{last}^*: u_1 \# \cdots u_n \# \to f_{last}(u_1) \# \cdots f_{last}(u_n) \# \text{ is not approx. determinisable w.r.t. Levenshtein.} \\ (\Box \succ (\bigcirc) (\odot)$

pproximate Problems

Approximate Functionality

 $\begin{array}{c} \text{Approximate Determinisation} \\ \text{0000000000} \end{array}$

Summary 000

Approximate Determinisation: Characterisation

• For rational functions to be approximately determinisable w.r.t. Levenshtein, **ATP** + twinning property must hold within SCCs of the transducer (**STP**).

pproximate Problems

Approximate Functionality

Approximate Determinisation

Summary 000

Approximate Determinisation: Characterisation

• For rational functions to be approximately determinisable w.r.t. Levenshtein, **ATP** + twinning property must hold within SCCs of the transducer (**STP**).

Lemma

A rational function given by a transducer \mathcal{T} is approximately determinisable w.r.t. Levenshtein family of distances iff \mathcal{T} satisfies **ATP** and **STP**.

• Both **ATP** and **STP** are decidable properties for transducers.

pproximate Problems

Approximate Functionality

Approximate Determinisation

Summary ●00

Summary and Future Work

Metrics Problems	Hamming	Levenshtein family
Approximate determinisation	Decidable	Decidable
Approximate functionality	Decidable	Decidable
Approximate synthesis	Open	Undecidable

• Approximate synthesis asks given a rational relation R, does \exists a sequential function close to some uniformiser of R?

イロト イポト イヨト イヨト 一日

References I

Aiswarya, C., Manuel, A., and Sunny, S. (2024).

Edit distance of finite state transducers.

In *ICALP 2024*, volume 297 of *LIPIcs*, pages 125:1–125:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Carayol, A. and Löding, C. (2011).

Uniformization in automata theory.

In 14th International Congress of Logic, Methodology and Philosophy of Science, pages 153–178. London: College Publications.

Choffrut, C. (1977).

Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles.

◆□▶ ◆圖▶ ★필▶ ★필▶ - ヨー のへで

 $Theoretical\ Computer\ Science,\ 5(3):325-337.$

Gurari, E. M. and Ibarra, O. H. (1983).

A note on finite-valued and finitely ambiguous transducers.

Mathematical systems theory, 16(1):61-66.

Schützenberger, M. P. (1975).

Sur les relations rationnelles.

In Barkhage, H., editor, Automata Theory and Formal Languages, 2nd GI Conference, Kaiserslautern, May 20-23, 1975, volume 33 of Lecture Notes in Computer Science, pages 209–213. Springer.

(日) (四) (王) (王) (王) (王)

Weber, A. and Klemm, R. (1995).

Economy of description for single-valued transducers.

Information and Computation, 118(2):327–340.